
SDP 19 Team 26, MDR Report 1

Abstract— Checkout aisles in grocery stores are inefficient.

There are better ways to process transactions that don’t involve

waiting in long lines for a cashier. We propose Zipcart: a system

that employs computer vision techniques to keep track of the items

in an order as a customer shops. It employs a centralized data store

on public cloud infrastructure that contains order and item

information. A smartphone interface is used by shoppers to audit

their order and the balance of their selected items

I. INTRODUCTION

Of all parts of the grocery shopping experience, the checkout

process is the most needlessly long and frustrating. Once

shoppers are done selecting the items they wish to purchase,

they queue up for service from cashier attendants. This entails

iteratively aligning the barcodes of items with a scanner,

bagging the groceries, and navigating the point of sale (POS)

terminal’s interface to process payment.

Maintaining order information and payment processing are

both tasks of the digital system. The cashier’s part in this is

helping the system identify each item in the order and selecting

the appropriate means for payment. Using computer vision

techniques, this first task could also be automated, as a system

can be trained to recognize the items that shoppers select

through passive observation. The second task could be

entrusted to the shopper, so long as the supported methods are

digital-friendly (nowadays, even checks can be processed by

digital systems using computer vision).

There are many competing solutions in this space. Amazon

Go [1] uses a large amount of cameras embedded in their stores

to track what customers take out of the store, charging them

accordingly. This approach is very costly and requires the type

of infrastructure and technical expertise that only a company

like Amazon has. Peapod [2] is one of a class of websites that

offer grocery delivery as a service. Consumers avoid trips to the

store at the expense of service charges. Additionally,

articulating which items (out of a similar class of items) can be

difficult, given the user interface and things like sales and

coupons for shoppers to consider. Both solutions require large

changes to the landscape of the grocery store. For Amazon Go,

it’s the addition of cameras and sophisticated infrastructure to

process video feeds. Sites like Peapod either need to employ

warehouses for groceries or alter the layout of stores to make it

more efficient for “grocery pickers” to sweep through the

R. Henriquez Jr. <ricardohenri@umass.edu>

R. Lagasse <rplagasse@umass.edu>
J. Azevedo <jazevedo@umass.edu>

landscape and fulfill orders. Zipcart necessitates retrofitting

shopping carts – not the store. This keeps the customer

shopping experience relatively unchanged and makes the cost

of renovation less expensive in terms of cost and time.

II. DESIGN

A. Overview

Our project seeks to present a more efficient alternative to the

checkout aisle. It starts with a system embedded onto every

shopping cart, with a camera mounted onto it. That camera

identifies items as they enter or exit the cart by reading their

barcodes. Once the system reads the barcode, it passes that

information onto a service running in public cloud

infrastructure (e.g. Amazon Web Services), which keeps track

of orders and item information in a database. The shopper will

use an interface on their smartphones (e.g. an Android

application) to audit the order balance and items selected as they

shop. For the future of our project, this would enable us to

process payments through services such as Google / Samsung /

Apple Pay, Venmo, and PayPal.

There are some interesting challenges that arise when trying

to utilize computer vision for this purpose. First, we need to

scan the barcodes of items as they enter the cart. Since we do

not require shoppers to put items into the basket in a specific

way, they enter the cart at unpredictable angles and speeds, and

yet we still must be able to read the barcodes with a high rate of

accuracy. Furthermore, the barcodes must be read in a timely

manner. Computer vision algorithms are highly resource-

intensive. The system running these algorithms has the heavy

workload of processing image frames and detecting not only the

barcode but direction of each item for the duration of each

shopping trip. This must all be done nearly in real-time, as large

latencies may confuse or upset shoppers who expect to see the

current state of their orders on the interface as soon as possible.

As we are not acting as store facilitators, we do not maintain

our own database of items and their relevant information, yet

we want our system to be able to scan and account for any item

with a barcode. As such, another one of our challenges involves

getting this information from an external source quickly. When

the web service happens upon an item it has no information on,

it must request for and cache it in a manner that complies with

the real-time constraints of our system. Lastly, our systems

must operate over the course of entire business days. To avoid

Ricardo Henriquez, EE Ryan P. Lagasse, CSE Jonathan Azevedo, CSE

Zipcart

 2

requiring maintainers to charge carts throughout the day, we

utilize the mechanical energy exerted by shoppers pushing the

cart to power our system. This necessitates the design of an

efficient subsystem that can generate an adequate amount of

power to sustain our system with the mechanical potential it

sees.

To meet the expectations of each of our stakeholders, we set

the following project requirements:

1. Recognize barcode as item is placed in cart

2. Detect when item is removed from cart

3. Display item list and current balances

4. Detect unscanned items to prevent theft

5. Sustain power for a full business day

To create this design, we set a number of assumptions about

our project. These are our specifications:

1. One item entered or removed per two-second interval

2. Barcode surface must be reasonably flat

3. Maximum system latency of four seconds

4. Eighteen hours of continuous operation

Residing in the appendix is an enhanced block diagram

made up of two figures that illustrate the topology of our

system in addition to the function of each component and the

relationships between them.

B. Power

We want our system to be self-sufficient in order to avoid

having to plug it into a wall outlet – having to do so multiple

times over the course of a day would be impractical. Our

approach is to take advantage of the mechanical motion of the

shopping cart and convert that into electrical energy which in

turn will charge our lithium ion battery. The project

requirements, state that our system must operate for a full

business day, which means the power generated must be greater

than the power consumed. Figure 1 shows the schematic

diagram of our power circuit. The diagram is separated into four

pieces which are the stepper motor, full-wave rectifier, voltage

regulator, and the Adafruit Powerboost 1000C [3].

The first piece is the Vexta PX245-02B-C8 stepper motor

which is two-phase and rated each at 6V and 0.8A. We decided

to use a stepper motor because they work best at low speeds and

in our application, the average walking speed of a customer is

3mph which equates to roughly 200RPM. Heading into MDR,

we only use one stepper motor as a proof of concept, which

plays the role of converting mechanical energy into electrical

energy. The power generated by a stepper motor is proportional

to the rotational speed of the motor shaft in the form of AC.

The second piece is converting the AC generated into DC and

we do this through a full-wave rectifier made up of 1N5818

schottky diodes [4]. Our stepper motor has two phases, each

phase must be rectified which is shown in figure 1. We added a

100uF capacitor at the output of the rectifier to help reduce

voltage variations.

This rectified voltage then feeds into the Pololu S7V7F5

voltage regulator [5] which takes the input voltage between the

acceptable voltage range of 2.7V-11V and efficiently converts

it into a stabilized 5V output. We chose this regulator because

it has the capability to step-up or step-down the input voltage,

which makes it an ideal choice in our application since the

voltage the stepper motor generates varies dependent on speed.

This regulator can source up to 1.6A which gives us plenty of

headway, since we do not expect to generate more than 1A.

Figure 2 shows the efficiency of this regulator sourcing current

at different input voltages. In our case, the efficiency depends

on how much voltage we generate at the input which is

dependent on the speed of the shopping cart.

The last piece is the Adafruit Powerboost circuit, which has

several necessary features. It has a built-in load-sharing battery

charger circuit which allows the Raspberry Pi to run while

charging the lithium-ion batteries. It also features a built-in

battery protection circuit which is necessary when charging

lithium-ion batteries to protect from overcharging them. This

circuit can recharge at a max rate of 1A and allows the battery

to output more than 1A if required.

To build this power circuit, we had to leverage the

information we learned in ECE 211 and 212 to understand the

general rules of putting together a circuit and the role each

element plays. ECE323 and ECE324 equipped us with the

knowledge to understand full-wave rectifiers and voltage

regulators.

The single most important aspect of the entire power circuit

is the stepper motor. None of the courses I have taken covered

stepper motors being used as generators so that is still a grey

Figure I: Power circuit diagram

Figure II: Pololu Voltage Regulator Efficiency [3]

 3

area and must spend more time researching.

For demo day, we constructed a separate circuit not shown in

the power diagram for testing purposes. This circuit was

designed to simulate the movement of a shopping cart. We used

an Arduino Micro, LM298N motor driver, and an extra stepper

motor to drive the primary stepper motor. We coded the

Arduino to rotate at a maximum and constant speed of

200RPM. This experiment will help us test different stepper

motors and reliably measure the amount of power produced at

varying speed.

The results we are primarily focused on is the amount of

power produced by the stepper motor. As mentioned, when the

motor shaft is rotating, current is produced. The rotational speed

of the shaft is proportional to the amount of generating current.

After assembling the entire circuit and presenting the load of

the battery and impedance of the Adafruit Powerboost 1000C

circuit, we drive the primary generator motor with the Arduino

simulation motor at maximum speed. Figure 3 is a plot that

shows the relationship between I-vs-RPM we presented during

MDR. This plot indicates that we produced a maximum of

180mA at 200RPM using only one motor which equates to

roughly 1W generated.

Our goal heading into CDR is to increase the amount of

power generated to increase the charging rate of the battery. We

plan to do this by wiring four stepper motors (one stepper motor

for each wheel on a shopping cart) in parallel which should

ideally quadruple the current. If four motors in parallel is not

feasible then we must consider different motors with larger

ratings per phase. It is worth mentioning that the Raspberry Pi

will consume 2.5W/h on standby and 4W/h with all peripherals

plugged in. We obtained these values by taking measurements

with a KILL-A-WATT power strip. Overall, to consider our

system being self-sufficient means the power generated must be

greater than the power consumed.

C. Optics & Detection

The detection subsystem is the main portion of our embedded

system, which reads the barcodes of items as they enter the cart.

The detection subsystem consists of two parts: optics and

software. The optical part includes a camera placed on the far

side of the cart facing inwards in addition to mirrors aligned

around the perimeter facing inwards as well. Once an item

enters the system and is seen by the camera, the detection

algorithm processes the video input, using image processing

techniques to locate the barcode in the image and extract the

UPC code from it.

Figure IV: Camera and Mirror arrangement

 The optics system is the most important part of the detection

subsystem as it is the greatest bottleneck. The camera must be

able to capture the barcode in its frame no matter orientation or

distance in respect to the camera. Cameras have a limited field-

of-view (FOV), which the barcode must be within to have a

chance of being recognized. For this reason, we use mirrors to

reflect the item back into the camera's FOV allowing us to

extend our angle of detection around the barcode instead of

being limited to placing objects flat in the direct line of sight of

the camera. The camera must also have a high enough

resolution to detect the spacing between the lines of the

barcode. Since it has to do this at variable lenses it must also

have an adjustable focus. Another requirement for the camera

is to be compatible with our software libraries, which all

cameras connecting to the Raspberry Pis CSI interface should

be. When using the Raspberry Pi there are limited camera

alternatives for its CSI interface, because of it we chose the best

one we saw fit which was the Kuman 5MP camera [12] with

adjustable focus that can stream 1080p at 30 frames-per-second

(FPS).

 For implementing computer vision, we use two libraries

jointly. The first being OpenCV [13] an extensive and powerful

open source computer vision library which provides us with a

plethora of visual processing tools. The second is PyZBar [14]

- the library we use jointly with OpenCV to detect barcodes

entering our video frame and to extract the UPC code to send to

our database.

Detection Procedure

1. Request an order to be made in the database

2. While true:

a. Detect barcode in video stream from optics system

b. Extract UPC code from barcode using PyZBar

c. Sends UPC code to cloud service

Techniques from CMPSCI 503: Embedded Systems will

greatly help in designing and building this system. In 503 we

used computer vision using OpenCV to track lanes for a self-

driving robot. Jonathan took this course and learned

Figure III: Vexta PX245-02B-C8 (I-vs-RPM)

 4

implementation and debugging of real-time embedded

computer vision systems. The experience acquired from this

course in terms of knowledge on OpenCV tools can be used to

better implement code to detect barcodes with minimal delay

and processing power. Skills in debugging are always helpful

in overcoming issues and reducing development time.

To continue with this system, we will have to learn better

techniques to reduce delays and extend the visibility with our

camera. This will mostly be in terms of better implementations

of CV and possibly machine learning to supplement the system

to improve performance.

The system must feel natural and require little user

supervision. To test the system, we must run timed tests in

which we see how fast or slow we can enter items in a cart at

any given interval without requiring multiple user scans per

items. By determining the interval and speed at which we can

place items through our system we can compare this to a natural

pace of an average shopper at a grocery store to determine

whether the system is sufficient enough to not interfere with the

users shopping experience

D. Cloud Infrastructure

The web service for this project takes barcodes from the

embedded system as input and uses them to manage both orders

and item information in a database. To build this service, we

leveraged the offerings on Amazon Web Services’ public cloud

infrastructure [6]. Web requests made to the service and

responses from it pass through the API Gateway, which handles

and routes this information with the context it is given. Our

system logic operates on Lambda [7], a “serverless”

computational platform. It has a Python 3 runtime just like our

embedded system. Lambda manages DynamoDB [8] (our non-

relational database platform) and makes requests to an external

barcode API. To interact with DynamoDB, we use a specially-

designed object mapping library called Bloop [9]. At the

moment, we are utilizing an API called Barcode Lookup [10],

although our design allows us to change vendors with minimal

effort.

Concepts from Software Intensive Engineering course were

beneficial in the process of designing this subsystem. In order

meet our latency specification, we evaluated a number of ways

to tackle this problem. Leveraging public cloud infrastructure

was a glaringly obvious solution, but what remained to be seen

was the manner in which we would instrument platforms to

meet our requirement. Through experimentation, in

consideration with what we had learned, we determined an

optimal solution for our needs. We also found the mindset of

writing good software ‒ gained from various assignments ‒ to

be useful in our implementation. Taking care to handle cases

for errors and exceptions, considering performance and

scalability, testing code well, and writing good documentation

were all practices that improved the development process of this

subsystem.

In order to test this subsystem, we performed a great deal of

integration testing. This involved having the system perform

mock actions to the database and manually verifying its

correctness. In getting this system ready for our Midway Design

Review demonstration, we accrued a good deal of technical

debt. What is really lacking from the subsystem that would

better ensure its effectiveness is unit tests and local integration

testing. We plan to implement this using a unit testing library

called nose [11] and using a local and self-contained version of

DynamoDB.

When we perform our integration tests on AWS

infrastructure, it returns the runtime of the code in milliseconds.

By performing numerous trials, we determined the average

runtime of our system for both a cache-hit and cache-miss

(when we are required to get info from the barcode API),

finding that the durations of both fit well within our

specification. On cache-misses, the expected runtime of our

system (updating both the item information cache and order

table) is 2.446 seconds.

E. User Interface

The User Interface is the portion of our system which will

actively communicate with the shopper to relay important

information like whether an item was successfully scanned. It

will also allow the user to view and manage their orders while

keeping track of malicious activity.

The feedback system consists of two meters of RGB 60 LED

Dotstar LEDs [15] placed along the inner, top perimeter of the

cart. This will flash green or red depending on the status of a

scan.

We also chose to create an Android application as it is the

most popular OS worldwide and the easiest to work with.

Having the ability to easily download and access the Android

Studio IDE gives us freedom and flexibility to take the app

where we want to. The Android application enables the user to

view their balance and the list of items currently in their cart

nearly in real time. In addition, it provides us with the

opportunity to integrate payment processing into the system.

Software Intensive Engineering will prove to be very helpful

in this part of the project as well as we need to create clean,

concise, sustainable code. Creating an application can be a hard

process and bad code practice will only server to delay us more

and cause more issues. It is very important that for this part of

the system as their will be multiple programmers working on it

that we must write clean, well commented, functional code and

practice good software development techniques like correct

usage of version control to complete this subsystem.

We will need to perform intensive integration tests covering

the entire spectrum from optics and detection to the cloud and

back in order to verify its effectiveness. The main goal of such

an experiment would be to ensure full system functionality and

minimal end-to-end latency. We will have to run both physical

and software tests by first adding time logging to important

functions in our code that communicate with different systems,

the purpose of this would be to later determine the greatest

bottlenecks in latency. We would then scan at least ten items,

with duplicates and new items in batch, at our defined natural

interval of 2 seconds. At this point, our system should be

automatically pushing data to our application and we should be

able to see the list of items, quantities, and the balance.

 5

III. PROJECT MANAGEMENT

Deliverable Status

1 Detect barcode around front-face of camera perspective Works up to 4”

2 Update cloud database with product information Works, meeting specification

3 Successful integration of feedback system Fully operational

4 Demonstrate power generation using stepper motor Generates 180mA at 5V

Table I: Status of MDR deliverables

Our team consists of two Computer Systems majors (Ryan

and Jonathan) and one Electrical major (Ricardo). As a result,

we split the deliverables amongst the group by major, with the

CSEs taking deliverables one through three and Ricardo taking

deliverable four. As a small team of three, we had agreed that

each of us would work primarily alone in order to make

progress, and stay in close communication with the team with

status and updates. This would allow us to each be flexible with

our schedules and not have to meet as a group to make progress,

while also allowing for the opportunity to meet when needed to

collaborate or solicit help.

Ricardo worked on the power subsystem and his deliverable

mostly alone and with great success. When issues arose or he

needed validation for his work before continuing onwards, he

arranged meetings with Professor Robert Jackson to talk about

the circuits and electronic components of his design. In creating

his demo, Ryan assisted him by loaning an Arduino and helping

him out with the code.

Ryan also worked mostly unsupervised, completing the

second deliverable in its entirety and that of deliverables one

and three with some assistance from Jonathan. This included

writing the detection code and integrating AWS for the MDR

demo. Ryan also completed the website in its entirety. Getting

the feedback system operational involved creating a circuit and

writing code, both of which Jonathan helped to debug.

Ryan and Ricardo set up the basic layout for the mock

shopping cart, which involved finding a suitable cardboard box,

installing mirrors, and testing out detection with a stationary

camera. Jonathan further expanded this by routing holes for

cables and mounting both the camera and feedback system

LEDs, making the mock system suitable for the demo.

IV. CONCLUSION

Team Zipcart is on schedule to complete our necessary goals.

We have completed each of our MDR deliverables and

demonstrated a functioning, minimal viable product for each

part of our system. Each piece works at a generally acceptable

state and is ready for enhancement going forward.

As we move closer to CDR, we have big hurdles to cross in

terms of new system capabilities to develop but we are on track

to completing these goals. We plan to greatly improve upon

barcode detection which is currently the largest issue in our

system, by employing improved cameras, image processing

techniques, and machine learning algorithms. Power generated

by the motors will also enhanced in order to increase output

current and meet the power requirements for our system. We

will also improve upon our user interface by incorporating a

user Android application that can be used for real-time order

monitoring.

If all goals are met by CDR, the team aims to optimize the

User Interface’s ease-of-use and aesthetic appeal, in addition to

tackling the problem of theft detection.

ACKNOWLEDGMENT

Team Zipcart would like to thank our advisor, Professor

Wolf, for making the time out of his busy schedule to meet

with us weekly and provide us with invaluable advice. We

also want to thank our evaluators, Professor Krishna and

Professor Aksamija, for critiquing our project and supplying

us with thoughtful feedback. We would also like to thank Fran

Caron, Professor Hollot, and Shira Epstein for their valued

assistance.

REFERENCES

[1] Amazon.com, Inc., Amazon Go. [Online]. Available:

https://www.amazon.com/b?node=16008589011

[2] Peapod, LLC. Peapod. [Online]. Available:

https://www.peapod.com/

[3] ada, l. (2018). Adafruit Powerboost 1000C. [online] Cdn-

learn.adafruit.com. Available at: https://cdn-

learn.adafruit.com/downloads/pdf/adafruit-powerboost-

1000c-load-share-usb-charge-boost.pdf [Accessed 20

Dec. 2018].

[4] Vishay.com. (2018). 1N5818. [online] Available at:

https://www.vishay.com/docs/88525/1n5817.pdf

[Accessed 20 Dec. 2018].

[5] Pololu.com. (2018). Pololu 5V Step-Up/Step-Down

Voltage Regulator S7V7F5. [online] Available at:

https://www.pololu.com/product/2119 [Accessed 20 Dec.

2018].

[6] Amazon Web Services, Inc., What is AWS. [Online].

Available: https://aws.amazon.com/what-is-aws/.

[7] Amazon Web Services, Inc., AWS Lambda. [Online].

Available: https://aws.amazon.com/lambda/.

[8] Amazon Web Services, Inc., AWS DynamoDB. [Online].

Available: https://aws.amazon.com/dynamodb/.

[9] numberoverzero, “Bloop: DynamoDB Modeling.”

[Online]. Available: https://bloop.readthedocs.io/en/latest/

[10] “Barcode Lookup Homepage.” [Online]. Available:

https://www.barcodelookup.com/

[11] J. Pellerin, “nose.” [Online]. Available:

https://pypi.org/project/nose/

[12] “Kuman 5MP 1080p HD Camera Module for Raspberry

Pi For Raspberry Pi 3 model B B A RPi 2 1

SC15.” [Online]. Available:

http://www.kumantech.com/kuman-5mp-1080p-hd-

camera-module-for-raspberry-pi-for-raspberry-pi-3-

model-b-b-a-rpi-2-1-sc15_p0063.html.

[13] OpenCV library. [Online]. Available: https://opencv.org/.

[14] NaturalHistoryMuseum, “pyzbar,” GitHub, 09-Jun-2018.

[Online]. Available:

https://github.com/NaturalHistoryMuseum/pyzbar.

[15] iPixel LED Shiji Lighting “APA102 Data Sheet.”

Adafruit. [Online].Available: https://cdn-

shop.adafruit.com/datasheets/APA102.pdf

https://cdn-shop.adafruit.com/datasheets/APA102.pdf
https://cdn-shop.adafruit.com/datasheets/APA102.pdf

SDP 19 Team 26, MDR Report 6

V. APPENDIX

Figure V: System Topology

Figure VI: Component Functionalities & Relationships

